Reproducing Chen & Manning (2014)

Neural dependency parsing is attractive for several reasons: first, distributed representation generalizes better, second, fast parsing unlocks new applications, and third, fast training means parsers can be co-trained with other NLP modules and integrated into a bigger system.

Chen & Manning (2014) from Stanford were the first to show that neural dependency parsing works and Google folks were quick to adopt this paradigm to improve the state-of-the-art (e.g. Weiss et al., 2015).

Though Stanford open-sourced their parser as part of CoreNLP, they didn’t release the code of their experiments. As anybody in academia probably knows, reproducing experiments is non-trivial, even extremely difficult at times. Since I have painstakingly gone through the process, I think it’s a good idea to share with you.

Continue reading

Advertisements